ResponsibleSteel GHG Requirements:
Criterion 8-4, GHG accounting

2nd February 2022, 8.00am – 9.30am (GMT)
2nd February 2022, 4.00pm – 5.30pm (GMT)
Antitrust statement

ResponsibleSteel™ is committed to complying with all relevant antitrust and competition laws and regulations. Failure to abide by these laws and regulations can potentially have extremely serious consequences for ResponsibleSteel™ and its members, including heavy fines and, in some jurisdictions, imprisonment for individuals. ResponsibleSteel™ has therefore adopted an Antitrust Policy, compliance with which is a condition of ResponsibleSteel™ membership and participation. You are asked to have due regard for this Policy today and indeed in respect of all other ResponsibleSteel™ activities.

Issues:

- Definition of crude steel (8.4.2.b):
 - GHG measurement point, and financial vs production tonnage - pending
- 8.4.6: GHG accounting rules for determination of GHG emissions intensity performance:
 a. GHG offsets
 b. GHG allocation to co-products/ by-products
 c. GHG allocation to intermediate products exported from the site
 d. Energy for on-site processing of crude steel
 e. Carbon Capture and Utilisation (CCU)
 f. Exported energy (electricity, heat, steam)
 g. Carbon Capture and Storage (CCS)
 h. Emissions associated with exported waste
 i. Downstream indirect emissions

New issue: export of process gases for energy generation
Principles:

GHG accounting rules for determination of GHG emissions intensity performance:

a. tonnes CO$_2$e per tonne crude steel produced
b. Focus is on ‘actual emissions’ (tonnes CO$_2$e) for producing steel
c. Measurement point is ‘crude steel’ → ‘actual emissions up to point at which crude steel produced’
d. GHG emissions intensity is not a silver bullet that does all things:
 a. Efficiency has its own financial value: sites benefit from e.g. selling energy, or selling CCU co-products
 b. Broader site level GHG efficiencies can be captured in the product carbon footprint
e. Consistency
f. Avoid double counting and missing emissions
g. ‘Keep it simple’
8.4.6: GHG accounting rules for determination of GHG emissions intensity performance:

a. GHG offsets
b. GHG allocation to co-products/ by-products
c. GHG allocation to intermediate products exported from the site
d. Energy for on-site processing of crude steel
e. Carbon Capture and Utilisation (CCU):
 • Current proposal: emissions captured (no ‘actual emissions’ at site) – may be emitted downstream, but should then be counted as user’s Scope 1 emissions; CCU could also be thought of as co-production – the site may allocate emissions to the co-product and reduce the steel’s carbon footprint
f. Exported energy (electricity, heat, steam):
 • Current proposal: emissions are counted as associated with crude steel production, rather than as downstream
 • Alternative approach: treat on-site energy generation as a downstream process – would be included in the product carbon footprint, but not in the GHG emissions intensity performance measure

New issue: export of process gases for energy generation: should the emissions be counted as associated with steel production (as currently proposed under f), or be treated as exported from the site? Proposal: to treat as associated with crude steel production

g. Carbon Capture and Storage (CCS): who ‘owns’ the emissions of the CCS process (infrastructure, operations)?
h. Emissions associated with exported waste
i. Downstream indirect emissions
8.4.6: GHG accounting rules for determination of GHG emissions intensity performance:

a. GHG offsets
b. GHG allocation to co-products/ by-products
c. GHG allocation to intermediate products exported from the site
d. Energy for on-site processing of crude steel
e. Carbon Capture and Utilisation (CCU):
 • **Current proposal**: emissions captured (no ‘actual emissions’ at site) – may be emitted downstream, but should then be counted as user’s Scope 1 emissions; CCU could also be thought of as co-production – the site may allocate emissions to the co-product and reduce the steel’s carbon footprint
f. Exported energy (electricity, heat, steam):
 • **Current proposal**: emissions are counted as associated with crude steel production, rather than as downstream
 • **Alternative approach**: treat on-site energy generation as a downstream process – would be included in the product carbon footprint, but not in the GHG emissions intensity performance measure

 New issue: export of process gases for energy generation: should the emissions be counted as associated with steel production (as currently proposed under f), or be treated as exported from the site? **Proposal**: to treat as associated with crude steel production

g. Carbon Capture and Storage (CCS): who ‘owns’ the emissions of the CCS process (infrastructure, operations)?
h. Emissions associated with exported waste
i. Downstream indirect emissions
8.4.6: GHG accounting rules for determination of GHG emissions intensity performance:

a. GHG offsets
b. GHG allocation to co-products/ by-products
c. GHG allocation to intermediate products exported from the site
d. Energy for on-site processing of crude steel
e. Carbon Capture and Utilisation (CCU):
 • Current proposal: emissions captured (no ‘actual emissions’ at site) – may be emitted downstream, but should then be counted as user’s Scope 1 emissions; CCU could also be thought of as co-production – the site may allocate emissions to the co-product and reduce the steel’s carbon footprint
f. Exported energy (electricity, heat, steam):
 • Current proposal: emissions are counted as associated with crude steel production, rather than as downstream
 • Alternative approach: treat on-site energy generation as a downstream process – would be included in the product carbon footprint, but not in the GHG emissions intensity performance measure

New issue: export of process gases for energy generation: should the emissions be counted as associated with steel production (as currently proposed under f), or be treated as exported from the site? Proposal: to treat as associated with crude steel production

g. Carbon Capture and Storage (CCS): who ‘owns’ the emissions of the CCS process (infrastructure, operations)?
h. Emissions associated with exported waste
i. Downstream indirect emissions